
Space-Efficient TCAM-based Classification Using
Gray Coding

Anat Bremler-Barr
School of Computer Science, the Interdisciplinary Center

Email: bremler@idc.ac.il

Danny Hendler
Department of Computer Science, Ben-Gurion University

Email: hendlerd@cs.bgu.ac.il

Abstract— Ternary content-addressable memories (TCAMs)
are increasingly used for high-speed packet classification. TCAMs
compare packet headers against all rules in a classification
database in parallel and thus provide high throughput unpar-
alleled by software-based solutions.

TCAMs are not well-suited, however, for representing rules
that contain range fields. Such rules have to be represented
by multiple TCAM entries. The resulting range expansion can
dramatically reduce TCAM utilization.

The majority of real-life database ranges are short. We present
a novel algorithm called short range gray encoding (SRGE) for
the efficient representation of short range rules. SRGE encodes
range borders as binary reflected gray codes and then represents
the resulting range by a minimal set of ternary strings. SRGE is
database independent and does not use TCAM extra bits.

For the small number of ranges whose expansion is not
significantly reduced by SRGE, we use dependent encoding
that exploits the extra bits available on today’s TCAMs. Our
comparative analysis establishes that this hybrid scheme utilizes
TCAM more efficiently than previously published solutions.

The SRGE algorithm has worst-case expansion ratio of 2W−4,
where W is the range-field length . We prove that any TCAM
encoding scheme has worst-case expansion ratio W or more.

I. INTRODUCTION

Packet classification is an indispensable building block
of numerous Internet applications in the areas of routing,
monitoring, security, and multimedia [1], [2], [3]. Network
routers employ packet classification schemes to streams of
incoming or outgoing packets in order to determine how each
packet should be handled. The routers use a classification
database that consists of a set of rules (a.k.a. filters). Each
such rule specifies which actions to apply to each packet that
matches the rule, actions such as whether the packet should
be forwarded or dropped, whether it should be logged or not,
etc.

In addition to specifying which actions to take, each
rule also specifies a pattern that determines which packets
will match it. These patterns are specified based on packet
header fields, such as the source/destination addresses and the
source/destination port numbers. A key is constructed from the
corresponding fields of each packet header and is compared
against the database rules. If the key matches the rule, then that
rule is used to determine how the packet should be handled.
Packet classification is often a performance bottleneck in the
network infrastructure. It is therefore important to design
packet classification solutions that scale to millions of key
search operations per second.

Ternary content-addressable memory (TCAM) devices are
increasingly used in the Industry for performing high-speed
packet classification. A TCAM is an associative memory
hardware device which can be viewed as an array of fixed-
width entries. Each TCAM entry consists of ternary digits,
each of which can assume the values 0, 1, or ∗ (‘don’t-care’).
When storing a classification database, each TCAM entry is
associated with a single classification rule and specifies a
pattern of packets that match the rule. Typically this leaves
a few dozens of extra bits in each entry which can be used by
range-encoding schemes (see Sections III-B, III-C).

TCAMs enable parallel matching of keys, such as those
derived from packet headers, against all entries. They can thus
provide high throughput that is unparalleled by software-based
solutions. When a key matches multiple TCAM entries, the
TCAM returns the index of the first matching entry. This index
is then used to locate the information specifying which actions
to apply to the packet.

A single ternary digit in a TCAM device requires 10-12
transistors compared to only 4-6 required by a single SRAM
bit [4]. This explains why TCAM devices are much more
expensive than SRAMs and are a key contributor to the cost of
gigabit line cards. As the number of TCAM devices deployed
worldwide is growing quickly, improving TCAM memory
utilization has important practical implications.

A significant obstacle to the efficient use of TCAMs for
packet classification is the fact that they are not well suited
for representing rules that contain range fields, such as port
fields. In general, such rules must be represented by multiple
TCAM entries. The resulting range expansion can dramatically
reduce the utilization of TCAM memory.

Traditionally, a range rule is converted to an equivalent set
of prefix rules (each of which can be directly stored to a single
TCAM entry) by using a prefix expansion technique originally
proposed by Srinivasan et al. [5]. Prefix expansion can be
highly inefficient, however, and was shown to cause a 6-fold
and more expansion of ranges that appear in real-life databases
[1].

A. Our Approach and Contributions

This paper presents a novel algorithm for the efficient
representation of range rules in TCAM-based classification
databases. Our work is motivated by the following observation,
resulting from the analysis of a large real-life classification

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1388
Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 17, 2008 at 00:23 from IEEE Xplore. Restrictions apply.

database consisting of more than 223K rules: the large ma-
jority of the ranges used by classification rules are relatively
short. Specifically, the length of 60% of the unique ranges and
40% of all ranges is less than 20.

We present a novel algorithm called short range gray
encoding (SRGE) for the efficient representation of short range
rules. SRGE works by encoding numbers (both range-borders
and search keys) using binary-reflected Gray code (BRGC)
and then covering each resulting range by a set of ternary
strings.

A Gray code is a binary encoding of a contiguous range of
integers such that the codes of any two adjacent numbers differ
by a single bit. An n-bit BRGC is constructed recursively
by reflecting an (n − 1)-bit BRGC (see Section IV for more
details). It is exactly this reflection property that is being used
by the SRGE algorithm as it allows to efficiently cover ranges
by using ternary strings that contain ‘don’t-care’ symbols.

To illustrate the benefits of using BRGC codewords as
opposed to a regular binary representation, consider a range
R = [i, i + 1] of length 2. As the BRGC codes of i and i + 1
differ by a single bit, R can be represented by a single TCAM
entry that contains a single don’t-care digit (in the single
position where i and i + 1 differ). In contrast, an average of
50% of length-2 ranges over numbers encoded by the regular
binary representation require two TCAM entries.

Similarly to BRGC, previously published algorithms [6],
[7], [8] also manage to reduce the expansion of rules (as
compared to prefix expansion) by representing ranges as a
set of arbitrary ternary values rather than as a set of prefixes.
However, all these algorithms require extra bits, a small num-
ber of each is available in each TCAM entry, for representing
all ranges. To the best of our knowledge, SRGE is the first
algorithm that significantly reduces range expansion without
resorting to the use of extra bits.

Another novel idea used by SRGE to farther reduce expan-
sion is the representation of ranges by a set of possibly over-
lapping ternary strings. All previously published algorithms
use a set of non-overlapping strings to represent a range. We
emphasize that, although some of the entries representing a
range may overlap, the SRGE algorithm only requires a single
TCAM lookup. If a key falls inside a range R, then the lookup
will return the first matching entry that belongs to the cover
of R.

As our empirical results show (see Section VI-C), SRGE
achieves a reduction of 25% in the number of redundant
TCAM entries required to represent ranges (when compared
with prefix expansion) for a big majority of the range rules.
A similar reduction in expansion is obtained for randomly-
generated short ranges.

To further improve TCAM utilization, we use the extra bits
that are typically available in TCAM entries by employing a
database-dependent hybrid-SRGE scheme. The high-level idea
is to automatically find the range rules whose SRGE encoding
requires the highest number of redundant TCAM entries and
to assign each of these a single extra bit.

Our tests show that the hybrid-SRGE scheme succeeds in re-

ducing database expansion caused by range rules from a factor
of 2.3 (achieved by using prefix expansion) to a factor of only
1.03, better than any other previously published algorithm.
We emphasize that, unlike previously published algorithms,
Hybrid-SRGE significantly reduces range expansion for a large
majority of the ranges without having to use extra bits. We
consequently believe that our algorithm will scale well into the
future as the number of ranges used by classification databases
continues to increase.

On the more theoretical side, we observe that the worst-case
range expansion of SRGE is 2W − 4, where W is the size
of range fields. This slightly improves over prefix expansion,
which was shown to have worst-case expansion of 2W−2 (see,
e.g., [8]). Moreover, we prove that if no extra bits are used
then the worst-case expansion of any range encoding scheme
is at least W .

II. TERMINOLOGY AND PROBLEM STATEMENT

In this section we introduce the terminology we use through-
out the paper and define the problem addressed by it. We
follow the notation of [8] wherever appropriate.

A packet header consists of fields, each of which is a bit
string. A key is a collection of K fields from the packet header.
Keys are matched against classification rules stored in entries
of a classification database.

Rules consist of K fields matching the corresponding key
fields. Packet P matches rule R if each of P ’s K key fields
matches the corresponding field of R. Each rule field f can
specify one of three types of matches.

1) Exact match: field f matches key field g if they are
equal.

2) prefix match: a prefix is a string of bits. Field f is a
prefix match for key field g if g is a prefix of f .

3) range match: a range is a contiguous interval of integers
[s, e], where s and e are W-bit numbers and s ≤ e.
Key fields matched by ranges are port fields of constant
size W (typically 16 bits). The length of a range is the
number of integers it contains.

This paper deals with classification databases that reside in
a TCAM device. A TCAM entry consists of ternary digits,
each of which can assume the values 0, 1 or ‘don’t care’,
denoted by ∗. Each TCAM entry is wide enough to contain
the concatenation of all the key fields, possibly having room
for some extra bits.

If a rule consists solely of fields that specify exact and/or
prefix matches then it can be represented by a TCAM entry in
a straightforward manner: a field representing an exact match
is stored in the TCAM entry as is; a field representing a prefix
match is padded with the appropriate number of don’t-cares
in the least significant digits.

In general, rules containing one or more range fields cannot
be represented by a single TCAM entry and range encoding
schemes are used to encode each range as a set of TCAM
entries. An encoding scheme maps each range R to a set of
TCAM entries that represent it, called the cover set of R.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1389
Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 17, 2008 at 00:23 from IEEE Xplore. Restrictions apply.

The expansion of a range is the number of TCAM entries
in its cover set. The range expansion factor of an encoding
scheme E, denoted RE , is the maximum size of a cover set
when using E, the maximum taken over all possible ranges.
The expansion factor is a function of W .

A widely used scheme for range encoding converts a range
to a set of prefixes, each of which is stored at a separate
TCAM entry. For example, for W = 3, the range [1, 6] can be
represented by the cover set {001, 01∗, 10∗, 110} with range
expansion 4. It is known that the range expansion factor of
this scheme over W -bit ranges is 2W − 2 [1].

Let D be a classification database. We let n(D) denote the
total number of rules in D. We let nE(D) denote the number
of TCAM entries required to represent D using scheme E.
Clearly nE(D) = n(D) if D contains no range rules. We let
FE(D) denote D’s database expansion factor using E, defined
as nE(D)

n(D) . In other words, FE(D) is the relative increase in
the number of entries required to represent D in TCAM using
scheme E.

We let r(D) denote the number of range rules in D. We
let nrE(D) denote the number of TCAM entries required to
represent all of D’s range rules using encoding scheme E. The
range redundancy of an encoding scheme E for a range R is
the number of additional, redundant, TCAM entries required
to represent R when represented by E. We let FRE(D)
denote D’s range redundancy factor using E, defined as
nrE(D)−r(D)

r(D) . In other words, FRE(D) is the average number
of redundant TCAM entries required to encode range rules of
D using scheme E.

In this paper we propose an encoding scheme that reduces
both the database expansion factor and the range redundancy
factor for real-world classification databases.

III. RELATED WORK

The issue of using TCAM devices for packet classification
has received considerable attention from the research commu-
nity over the last few years. A key question dealt with by
researchers in this regard is that of improving the utilization
of TCAM memory. This issue was considered both from
the algorithmic [6], [7], [8], [9] and the architectural [10]
perspectives.

Spitznagel, Taylor, and Turner, introduced Extended TCAM
(E-TCAM) [10], which implements range matching directly in
hardware in addition to reducing power consumption by over
90% relative to standard TCAM. While this may represent
a promising long-term solution, it seems that changing the
ternary nature of TCAM entries while maintaining reasonable
per-bit cost and addressing scalability issues will not be
accomplished in the near future.

In this section we briefly describe prior algorithmic work
that is related to the issue of TCAM range representation.

A. Prefix Expansion

The traditional technique for range representation, origi-
nated by Srinivasan et al. [5]), is to represent a range by a set of
prefixes, each of which can be stored by a single TCAM entry.

The worst-case expansion ratio when using prefix expansion
for W -bit fields is 2W − 2. The problematic range is Rw =
[1, 2w − 2]. It is easily seen that the smallest set of prefixes
that covers Rw is the following: {01∗w−2, 001∗w−3,
0001∗w−4, · · · , 0w−11, 10∗w−2, 110∗w−3, · · · , 1w−10}. 1

As observed by [1], a single rule that includes two 16-bit
range fields could, in the worst-case, require (2·16−2)2 = 900
entries.

B. Database-dependent Range Encoding

Database-dependent encoding of ranges [6] makes use of
extra bits, available in TCAM entries, for encoding ranges that
occur in the database more efficiently. In such schemes, the
encoding of a range may depend on the number of occurrences
of that range (and of other ranges) in the database.

The number of unique range fields in today’s classification
databases is around 300. As observed by [8], this number is
anticipated to continue to grow in the future. The number
of extra bits per TCAM entry may vary according to the
configuration of the device, but is typically a few dozen bits.
It is therefore clear that the aforementioned simple scheme is
not scalable.

Liu [6] proposed hierarchical encoding schemes to alleviate
this problem. The encoding scheme of [6], however, may result
in high expansion. Lunteren and Engbersen [7] suggested
to use hierarchical encoding for compressing general TCAM
rules. They present several versions of their scheme. However,
the version that may reduce the expansion of range rules
considerably complicates the task of incrementally updating
the database.

In addition to making updates more expensive, hierarchical
dependant encoding requires extra logic so that the appropriate
search key fields can be matched against all possible ranges.
To maintain high throughput, either special-purpose hardware
must be used or a pre-computed table must be stored in
memory, whose size increases quickly with the number of
ranges. These problems restrict the scalability of hierarchical
dependant encoding.

In contrast, our hybrid-SRGE scheme encodes the vast
majority of ranges without using extra bits and uses dependent
encoding only for a very small number of ranges. It thus avoids
the above problems.

C. Database Independent Range Encoding

Independent encoding techniques are techniques that encode
each range independently of the distribution of ranges in the
database. Lakshminarayana et al. present a clever algorithm
for the independent encoding of ranges, based on the concept
of fence encoding [8]. Their technique, called Database In-
dependent Pre-Encoding (DIRPE), represents ranges by sets
of arbitrary ternary strings and is based on the use of extra
bits. Unlike the algorithms described in Section III-B , DIRPE

1While this is the smallest set of prefixes required to cover Rw , we
observe that this is not the smallest set of ternary strings that can cover
Rw . In fact Rw can be covered by the following set of W ternary strings:
{01∗w−2, ∗01∗w−3, ∗∗01∗w−4, · · · , 1 ∗w−2 0}.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1390
Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 17, 2008 at 00:23 from IEEE Xplore. Restrictions apply.

is an independent encoding scheme and extra bits are never
assigned to any particular range.

The efficiency of DIRPE is a function of the number of extra
bits that are available. When the number of available extra
bits decreases, the DIRPE-encoding of all ranges becomes
less efficient. In contrast, the SRGE algorithm is an efficient
independent encoding scheme that does not require extra bits.

Hybrid-SRGE encodes the few ranges whose expansion is
not improved by SRGE by assigning an extra bit to each of
them. A similar hybrid approach is employed by DIRPE for
decreasing its expansion. However, unlike in our scheme, in
the case of DIRPE the assignment of extra bits to frequently-
occurring ranges increases the expansion ratio of all other
ranges.

We evaluated our hybrid-SRGE scheme on the same
database that was used to evaluate DIRPE in [8]. Our results
establish that hybrid-SRGE outperforms hybrid-DIRPE on
that database by achieving a range expansion factor of 1.03,
compared with a factor of 1.12 achieved by DIRPE. This
superior expansion factor is achieved by using less than 40%
of the extra bits used by hybrid-DIRPE.

D. Minimizing Boolean Expression

We observe that the problem of minimizing TCAM range
expansion is, in fact, a special case of the problem of minimiz-
ing the size of Disjunctive Normal Form (DNF) expressions.
This connection between the two problems was unnoticed
prior to this work.

Mapping the TCAM range expansion problem to the prob-
lem of minimizing DNF expressions is done as follows. The
variables in the DNF expression correspond to the W bits
representing a range. The boolean DNF expression is the
representation of the range. A range is expressed as a sum of
minterms, each of which represents a number 2 and the goal
is to find the minimal sum-of-products of the expression. For
example, let us consider the range R = [10, 11]. Let b0 denote
the units digit and let b1 denote the tenths digits. The sum of
minterms corresponding to R is b1b0+b1b

′
0 and the minimal

sum of products is b1 which corresponds to the ternary string
1∗.

DNF minimization is a well studied problem. The Karnaugh
maps technique can be used to solve instances of the problem
involving up to 5 variables and the Quine-McCluskey algo-
rithm can provide a general solution. As the problem is NP-
complete, the Quine-McCluskey algorithm is impractical when
the DNF formula involves a large number of variables.

A recent paper by Schieber et al. presents a linear time
algorithm for finding the minimum size DNF expression
corresponding to any range of binary-coded numbers [11].
They also show that the worst-case expansion of ranges over
binary-coded numbers to arbitrary ternary strings is 2W − 4,
slightly better than the 2W − 2 expansion factor achievable
when only prefixes may be used.

2A minterm is also called a standard product or canonical product term.
This is a term in which each variable appears exactly once.

The rest of the paper is organized as follows. Sections IV
and V describes the SRGE algorithm and hybrid scheme,
respectively. In section VI, our empirical evaluation of SRGE
establishes that it reduces the expansion of a large majority of
the ranges as compared to prefix encoding. In Section VII, we
prove that correctness and performance claims for the SRGE
algorithm. In section VIII we prove that any encoding scheme
has worst-case expansion ratio at least W . Conclusions and
open questions are discussed in section IX.

IV. SRGE: EFFICIENT ENCODING OF SHORT RANGES

In this section we describe the Short Range Gray Encoding
(SRGE) algorithm for the efficient representation of short
range rules in TCAM devices.

A Gray code is a binary encoding of a contiguous range
of integers such that the codes of any two adjacent numbers
differ by a single bit. SRGE uses a specific Gray code called
the binary-reflected Gray code (BRGC). An n-bit BRGC is
generated recursively as follows. The first 2n−1 code words
are constructed by prefixing 0 to all the (n−1)-bit BRGC code
words; the last 2n−1 code words are constructed by prefixing
1 to the reflected (i.e. listed in reverse order) list of (n−1)-bit
BRGC code words. It is exactly this reflection property of the
BRGC code that allows our algorithm to minimize the size of
range cover sets.

The pseudo-code of the SGRE algorithm is shown in Figure
1. The SRGE-cover procedure receives a range [sb, eb] of
binary numbers, of size 2 or more. It returns a set of ternary
strings covering the SRGE codes of all the numbers in this
range. In the following description of the pseudo-code of the
SRGE-cover procedure, we refer the reader to the illustrations
of Figure 2. We let T denote the full binary tree of height W
shown in these illustrations.

First, the BRGC codes of sb and eb are computed (and
stored into variables s and b, respectively); the least-common-
ancestor (LCA) of s and b in T , denoted p, is also computed
(step (1), see Figure 1, (1)). Computing BRGC codes (not
shown) is very simple and can be implemented efficiently in
software as follows. The most significant digit is unchanged;
any other digit i of the BRGC code is constructed by taking
the exclusive-or of binary digits i and i + 1.

The range [s, e] is split by p into two sub-ranges: one in p’s
left subtree and the other in its right subtree. The right and
left borders of these sub-ranges are computed in step (2) and
stored to variables pl and pr, respectively (see Figure 1, (2)).

Without loss of generality, assume that the sub-range in
p’s left subtree, [s, pl], is no longer than the one in p’s right
subtree. A cover set of prefixes, denoted prefixes1, that covers
the BRGC codes of all the numbers in [s, pl], is computed in
sub-step (3.1). Now the reflection property of BRGC coding
is used for minimizing the size of the cover set as follows (see
Figure 1, (3)). The digit in each of the prefixes in prefixes1
corresponding to p’s right/left edges is changed to ∗ (sub-
steps (3.2), (3.3)). The reflection property of BRGC coding
guarantees that prefixes1 now covers a mirror sub-range of
[s, pl] with regard to p.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1391
Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 17, 2008 at 00:23 from IEEE Xplore. Restrictions apply.

SRGE-cover([sb, eb]) returns a set of ternary strings covering the range [sb, eb]

(1) s← BRGC encoding of sb, e← BRGC encoding of eb, p← least common ancestor of s and e
(2) pl← rightmost leaf in p’s left subtree, pr ← leftmost leaf in p’s right subtree.
(3) if |[s, pl]| ≤ |[pr, e]| # The other case is symmetric

(3.1) prefixes1 ← prefix cover of [s, pl]
(3.2) i← digit position corresponding to p’s left/right edges
(3.3) ∀q ∈ prefixes1: set q’s i’th digit to ∗. # prefixes1 now also covers the mirror of [s, pl] with regard to p
(3.4) s′ ← pr + |[s, pl]| # [s′, e] is the sub-range of [pr, e] not covered by prefixes1
(3.5) if |[s′, e]| = 0 return pefixes1

We still need to cover [s′, e]
(4) p′ ← least common ancestor of s′ and e, pl′ ← rightmost leaf in p′’s left subtree, pr′ ← leftmost leaf in p′’s right subtree
(5) if |[pr′, e]| ≥ |[s′, pl′]|: # Case I

(5.1) prefixes2 ← prefix cover of [pr′, e]
(5.2) i← digit position corresponding to p′’s left/right edges
(5.3) ∀q ∈ prefixes2: set q’s i’th digit to ∗. # prefixes2 now also covers the mirror of [pr′, e] with regard to p′

(5.4) return prefixes1
⋃

prefixes2
(6) else # CASE II: |[s′, pl′]| > |[pr′, e]|

(6.1) prefixes2 ← prefix cover of [pr′, e]
(6.2) q ← the prefix corresponding to p′ left subtree
(6.3) return prefixes1

⋃
prefixes2

⋃
{q}

SRGE-construct-key(b) returns a search key for value b
return BRGC encoding of b

Fig. 1. Pseudo-Code for the SRGE algorithm

s e

p

s epl pr

p

s’s epl pr

p

(1) (2) (3)

s’ pl’ pr’ e

p’

p

pr
pr s’ pl’ pr’ e

p’

p

s

e’

pr s’ pl’ pr’ e

p’

p

s

e’

pr s’ pl’ pr’ e

p’

p

s

ql

q

(4) (5) Case I (6) Case II

Fig. 2. The steps of the SRGE algorithm

If the input range [s, e] is completely covered by prefixes1,
then this cover set is returned (sub-step (3.5)). Otherwise, the
residue of the right sub-range still needs to be covered. Let
the sub-range [s′, e] be that residue.

Similarly to step (3), the LCA of s′ and e in T , denoted p′,
is computed (step (4)). The range [s′, e] is partitioned by p′

into two sub-ranges: one in its left subtree and the other in its
right subtree. The left and right borders of these sub-ranges

are computed and stored to variables pl′ and pr′, respectively
(see Figure 1, (4)). Now there are two cases to consider. I

1) The sub-range [pr′, e], in the right subtree of p′, is no
shorter than the sub-range [s′, pl′] in the left subtree of
p′. In this case we can cover [s′, pl′] by reflecting the
prefix cover set of [pr′, e] around p′. Note that we are
guaranteed that all covered numbers are within the input
range. This is accomplished by step (5), see Figure 1,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1392
Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 17, 2008 at 00:23 from IEEE Xplore. Restrictions apply.

(5).
2) Otherwise, reflecting the cover set of [pr′, e] is not

enough to cover [s′, pl′]. In this case [s′, pl′] is covered
by the prefix corresponding to the left child of p′.
Once again, we are guaranteed that all the numbers
covered by this prefix are within the input range. This
is accomplished by step (6), see Figure 1, (6).

We note that, in general, the ternary strings in the cover
set produced by the SRGE-cover procedure may overlap
each other. We emphasize that, although some of the entries
representing a range may overlap, the SRGE algorithm only
requires a single TCAM lookup. If a key falls inside a range
R, then the lookup will return the first matching entry that
belongs to the cover of R.

The SRGE-construct-key procedure receives a (binary)
header field b and returns the corresponding key with which
to search for rules matching the field (see Figure 1). The key
is simply the SRGE encoding of b.

Figure 3 demonstrates how the SRGE algorithm covers the
range [6, 14].

0000 0001 0011 0010 0110 0111 0101 0100

0
1

01 1 0 1 1 0
0 1

0 1

0

1100 1101 1111 1110 1010 1011 1001 1000

0
1

01 1 0 1 1 0
0 1

1 0

0

0 1

Gray Prefixes: 010*, 11**, 101*, 1001

Code Gray Entries (Case 1): *10*, 1*1*, 1*01

s pl pr s’ pl’ pr’ e

Fig. 3. SRGE example: covering the range [6 − 14].

V. HYBRID-SRGE

The size of TCAM entries is typically larger than the size of
the classification rules stored in them. This leaves a number of
extra bits which can be used by range-encoding schemes. To
further improve TCAM utilization, we use these extra bits by
employing a database-dependent hybrid-SRGE scheme similar
to that described in [6].

The high-level idea is to assign a single extra bit to each of
the ranges whose TCAM entries consumption is highest under
SRGE encoding. More specifically, let x denote the number
of extra bits available in every TCAM entry. Hybrid-SRGE
works as follows. First, it computes a list of the unique ranges
that occur in the database, sorted in decreasing order of the
overall number of redundant entries they require under SRGE
encoding. By ‘overall number’ we mean the total number of
redundant entries that are required by the SRGE representation
of all the occurrences of the range in the database. Then, each
of the first x ranges in this list is dealt with by using a standard

… > 100 …

… [001,010] …

… >= 010 …

… [011 100] …

Database rules (binary)

TCAM with Hybrid SRGE

… *** … 1*

… 0*1 … **

… *** … *1

… *10 … **

… 010 … Packet
Processor

... 011 ...| 01

… > 110 …

… [001,011] …

… >= 011 …

… [010 110] …

Database rules (Gray)

Fig. 4. Example of the hybrid-SRGE scheme. Binary ranges > 100, > 010
are mapped using dependent coding, while the other ranges are encoded using
BRGC. This example only displays the values of a single packet field. The
binary-encoded field value ’010’ is transformed to BRGC code ’011’. The first
extra bit in the corresponding search key is set, as value ’011’ is included in
range ≥ 011 and the first extra bit is allocated to this range.

database-dependent encoding that assigns a single extra bit to
it. We call these ranges the x heaviest ranges.

To exemplify hybrid-SRGE, consider the well-known range
≤ 1024 that encapsulates all registered ports. This is the
heaviest range under SRGE. Hybrid-SRGE assigns the first
extra bit (bit 1) to the heaviest range. Thus bit 1 is assigned
to the range ≤ 1024. The extra bit is used as follows. Extra
bit 1 of each entry that contains a source port field with the
range ≤ 1024 is set to 1. Extra bit 1 of all other entries is set
to ∗. 3

As for search keys, bit 1 of a search key is set to 1 if the
key falls within range R and to 0 otherwise. This guarantees
that a key whose source port field is outside R will never
match R and that a key whose source port field is inside R
may match R, depending on the values of its other fields.
Assigning an extra bit to a range results in expansion ratio 1
(i.e. no expansion) for that range.

See Figure 4 for an example illustrating the architecture of
hybrid-SRGE.

VI. EXPERIMENTAL RESULTS AND COMPARATIVE

ANALYSIS

We evaluated the efficiency of the hybrid-SRGE scheme on
both real-life and random databases.

Our real-life database is a collection of 126 separate files
originating from various applications (e.g., firewalls, acl-
routers, intrusion prevention systems) collected over the year
2004. This database is the union of the two databases that
were used by [1] and [8]. We are grateful to the authors of
these papers for sharing these databases with us. The database
comprises a total of 223K rules which contain 280 unique

3The range ≤ 1024 can appear also in the destination port field. All
the occurrences of this range in the destination port field are represented
independently by an additional extra bit, extra bit 2.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1393
Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 17, 2008 at 00:23 from IEEE Xplore. Restrictions apply.

ranges. Prefix expansion resulted in an expansion factor of
2.6. Overall, ∼ 26% of the database rules contained range
fields. Excluding the single range ≥ 1024, ∼ 14% of the rules
contained ranges.

A. Short Ranges

Figure 5 displays the distribution of range lengths in our
database. More than 60% of the unique ranges that appear in
the database have length less than 20 and 22% percentage of
the total number of unique ranges have length 2.

However, only 22% of the total number of ranges have
length less than 20. The huge difference between the fractions
of short unique ranges and short ranges is largely caused by
a single rule that appears very frequently in a single database
file. To mitigate the effect of such anomalous files, Figure 5
displays also the fraction of short ranges when only ranges that
appear in at least two files are taken into account. Measured
this way, the fraction of short ranges grows to ∼ 40%.

Why do short ranges occur so frequently in real-life classifi-
cation databases? This phenomenon primarily results from the
fact that ranges are commonly used for matching the source-
port and destination-port fields. Port numbers are allocated by
IANA [12] and it is often the case that ports that belong the
the same protocol family are assigned consecutive numbers.
For example, the port number of snmp is 161 and the port
number of snmptrap is 162. Many classification rules need
to match the snmp protocol family and, consequently, use the
range 161−162. Typically, each application is assigned a small
number of ports which can thus be matched by a short range.

There is, however, also a small number of applications that
use a wide range of ports. As two examples, Microsoft’s
DirectX gaming uses ports in the range 2300−2400 and Real
Audio uses ports in the range 6970− 7170 4.

A second type of long ranges are ranges that partition all
ports to two general categories [13]. Key examples are the well
known rules ≤ 1024 and > 1024 that partition ports to the sets
of registered ports and dynamic/private ports, respectively.

B. Evaluating SRGE on Random Databases

We compare the efficiency of different range representation
algorithms by comparing their database expansion factor and
range redundancy factor. The database expansion factor of
database D using scheme E is the relative increase in the
number of entries required to represent D in TCAM using
scheme E. The range redundancy factor of database D using
scheme E is the average number of redundant TCAM entries
required to encode range rules of D using E. See Section II
for the precise definitions of these metrics.

Clearly, a perfect encoding scheme will achieve a database
expansion factor of 1 (i.e. no expansion). The range encoding
redundancy factor focuses only on range rules and quantifies
the number of extra TCAM entries that is required to represent
them. A perfect encoding scheme will clearly have a range
encoding redundancy factor of 0.

4For confidentiality reasons, the above examples are not derived from our
database.

10 100 1000 10000 70000
0

0.2

0.4

0.6

0.8

1
CDF range length

F
ra

ct
io

n

Range Length

Uniqe Ranges
Ranges
Ranges (#files >1)

Fig. 5. Distribution of range lengths, calculated as a fraction of 1) the total
number of unique ranges, 2) the total number of ranges 3), the total number
of ranges that appeared in at least 2 files

Figure 6 compares the efficiency of SRGE and prefix
encoding on a database that consist of ranges whose length
is chosen randomly and uniformly from the interval [1, 2x]. It
shows the reduction in range expansion obtained by SRGE as
compared with prefix encoding, as a function of x. SRGE is
significantly more efficient for short ranges and reduces the
range expansion of databases in which all ranges are shorter
than 32 by ∼ 16%. For random databases in which the range
length is chosen randomly and uniformly from the interval
[1, 216], the average expansion reduction is ∼ 5.5%.

C. Evaluating hybrid-SRGE on Real-Life Databases

Table I summarizes our evaluation results on real-life
databases. The hybrid-SRGE scheme reduces the database
expansion factor to 1.03 by using only 14 extra bits.

We tested hybrid-SRGE also on the database that was used
for testing DIRPE in [8]. Using 14 extra bits, we obtained an
expansion factor of 1.03. This is a significant improvement as
compared to the hybrid-DIRPE algorithm which, as reported in
[8], achieved an expansion factor of 1.12 on the same database
by using 36 extra bits. Figure 7 displays the contribution of
the first x ”heaviest ranges” (excluding the range ≥ 1024) to
the total expansion.

For each range, we calculate its contribution as the product
of the number of times it appears in the database and the
number of entries required to represent it by prefix expansion.
As can be seen, less than 10 of the heaviest ranges contribute
∼ 92% of the expansion. Taking into account only ranges
that appear in more than one file does not change the result
significantly. The expansion factor of 1.03 was obtained by
hybrid-SRGE by coding the 12 heaviest ranges with extra bits.
5 Our calculations show that SRGE reduces the redundancy
caused by all the ranges that are not assigned extra bits by
∼ 25%.

5Two of the 10 unique ranges appear in both the source and destination
port fields. We thus needed a total of 12 extra bits to encode these 10 ranges.
Taking into account the additional 2 bits that were required for encoding the
ranges ≥ 1024, we get a total of 14 extra bits.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1394
Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 17, 2008 at 00:23 from IEEE Xplore. Restrictions apply.

Algorithm Extra bits Redundancy Expansion

Avr. DB Binary 2 3.37 1.82
Avr. Files Binary 2 3.85 1.34
Avr. DB hybrid-DIRPE[8] 36 - 1.12
Avr. DB hybrid-SRGE 14 1.2 1.03

TABLE I

EXPANSION AND REDUNDANCY FACTORS USING PREFIX ENCODING

(BINARY), HYBRID-DIRPE AND HYBRID-SRGE USING EXTRA BITS. THE

BINARY ENCODING FACTORS ARE COMPUTED ASSUMING THAT THE

RANGE ≥ 1024 FOR BOTH THE SOURCE AND DESTINATION PORT FIELDS IS

ASSIGNED AN EXTRA BIT.

VII. SRGE CORRECTNESS AND PROPERTIES

In order to prove the correctness of the SRGE algorithm, we
need to show that the algorithm covers correctly any range.
Let R = [s, e] be a range sent as input to the SRGE-cover
procedure. Let p, s′, pl, pr, p′, pl′, pr′ be as in Figure 2,
e′ be the reflection of e w.r.t. p′, q be the root of p’s left
subtree, and ql be the leftmost leaf in q’s subtree. Note that
pl′ is the rightmost leaf in q’s subtree. In step 3, [s, pl] and
its reflection [pr, s′] are covered (the other case is symmetric).
If |[s′, e′]| > 0, then the covering set is extended in case I
(step 5, by covering [pr′, e] and its reflection [e′, pl′]) or case
II (step 6, by covering [ql, pl′] and [pr′, e]).

Hence, we need to prove that the three following cases of
covering [s, e] hold:

1) |[s, pl]| = |[pr, e]|: [s, e] = [s, pl] ∪ [pr, s′] (where s′=e)
2) Case I: [s, e] = [s, pl] ∪ [pr, s′] ∪ [e′, pl′] ∪ [pr′, e]
3) Case II:[s, e] = [s, pl] ∪ [pr, s′] ∪ [ql, pl′] ∪ [pr′, e]
The first case is straightforward. In cases I and II, since

[s, e] = [s, pl] ∪ [pr, s′] ∪ [s′, pl′] ∪ [pr′, e], we only need to
prove the following two claims concerning the range [s′, pl′].

Claim 1: In case I, [pr, pl′] ⊇ [e′, pl′] ⊇ [s′, pl′] holds.
Proof: Let pc be the right child of p. p′ can be either

2 4 6 8 10 12 14 16
0

10

20

30

40

50

E
xp

an
si

on
 R

ed
uc

tio
n(

%
)

Range length <= 2x bits

Reduction in range expansion using SRGE vs Binary

1

Fig. 6. Random database: reduction in range expansion achieved by SRGE
as a function of range length

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The contribution of the x "heaviest" ranges

F
ra

ct
io

n

Number of Ranges

Conribution
Contribution (#files > 5)

Fig. 7. Distribution of the contribution of the x heaviest ranges to the overall
expansion

pc or a descendant of pc. By definition, e is in the subtree of
p′. Hence e′ is also in the subtree of p′ and hence is also in
the subtree of pc. Since pr is pc’s leftmost child, it follows
that [pr, pl′] ⊇ [e′, pl′] holds. Clearly, [e′, pl′] ⊇ [s′, pl′] since
|[pr′, e]| ≥ |[s′, pl′]| and |[pr′, e]| = [pl′, e′]|.

Claim 2: In case II: [pr, pl′] ⊇ [ql, pl′] ⊇ [s′, pl′]
Proof: Let pc be the right child of p. p′ can be either pc or

a descendant of pc. [pr, pl′] ⊇ [ql, pl′] clearly holds since q is
a prefix in the subtree of p′ hence also in the subtree of pc, and
pr is the leftmost child in pc. Showing that [ql, pl′] ⊇ [s′, pl′]
is also straightforward from the fact that s′ is in the left subtree
of p′ and hence also in the subtree of q.

Claim 3: A prefix in binary encoding translates to a prefix
in BRGC.
The proof follows from the definition of BRGC by a simple
induction on the number of bits.

For a range [e, s] we let nSRGE denote the size of the set
of ternary strings covering the range [e, s] that results from
applying the SRGE algorithm. Let nprefix denote the size
of the set of prefixes by which the prefix expansion technique
covers [e, s].

Lemma 4: For all ranges [e, s], nSRGE ≤ nprefix holds.
Sketch of Proof It can be easily shown that the prefix

expansion algorithm must use the prefixes that cover the ranges
[s, pl] and [pr′, e] and, in case II, at least one additional prefix.
The SRGE algorithm either uses these prefixes or, by using the
reflection property of BRGC, coalesces pairs of these prefixes
thus reducing the size of the covering set.

Lemma 5: The worst case expansion of SRGE algorithm is
2W − 4
Sketch of Proof: We prove the claim by a variation on the proof
of the binary worst case expansion in [11] adopted to code

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1395
Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 17, 2008 at 00:23 from IEEE Xplore. Restrictions apply.

gray. Note, that it is easy to prove that the range [1, 2W−1 +
2W−2 − 2] requires expansion 2W − 4.

Lemma 6: The time complexity of finding an SRGE cover
is O(W).
Sketch of Proof: The dominating factor in the time complexity
of an SRGE cover construction is that of finding the prefix
cover of two ranges: one in stage (3.1) and another either in
stage (5.1) or in stage(6.1). It is easily seen that in both cases
the time complexity is O(W).

The proof of the following lemma is omitted for lack of
space.

Lemma 7: Let R be a BRGC range. Then the cover ob-
tained by SRGE for R is optimal.

VIII. A LOWER BOUND ON RANGE EXPANSION WITHOUT

EXTRA BITS

In this section we prove that any range-representation algo-
rithm that does not use extra bits has a worst-case expansion
ratio of at least w, regardless of the number encoding it uses.

A w-encoding is a 1:1 mapping of the integers in
{0, · · · , 2w − 1} onto the set of binary strings of length w.
A string matches a set of ternary strings P if it matches at
least one string of P .

Lemma 8: Let P be a set of ternary strings. If exactly 2w−1
w-bit numbers match P then |P| ≥ w holds.

Proof: The proof goes by induction. For w = 1, clearly,
a set of ternary strings that is matched by either 0 or 1 must
be of length at least 1. Assume the claim holds for w = i,
we now prove for w=i+1. Let P be a set of ternary strings
that is matched by exactly 2w+1-1 (w+1)-bit binary numbers.
Assume that |P| < w+1 holds to obtain a contradiction. Let
bw+1bw · · · b0 be the single (w+1)-bit number that does not
match P . Consider the bits in position w+1 of the strings in P .
If all these bits are in {bw+1, ∗}, then either (1−bw+1)bw · · · b0

does not match P or bw+1bw · · · b0 matches P . Both these
cases contradict our assumptions. Thus there must be at least
one string in P whose most significant bit is 1 − bw+1. Let
P ′ be the set obtained from P by removing all such strings
from P and truncating the most significant bit of all remaining
strings. Then P ′ covers all w-bit numbers except for bw · · · b0

and is of length less than w. This is a contradiction.
Lemma 9: The worst-case expansion ratio of any scheme

is at least w, regardless of the encoding.
Proof: From Lemma 8, the range [0, · · · , 2w− 2] cannot

be represented by a prefixes set of size less than w.

IX. CONCLUSIONS AND FUTURE WORK

We have presented the SRGE algorithm for the efficient
encoding of short ranges. The SRGE algorithm achieves a
significant reduction in range expansion without resorting to
the use of extra bits. We’ve also shown that the hybrid-SRGE
scheme, that combined SRGE with the dependent-encoding of
a small number of large high-expansion ranges, dramatically
reduces the range expansion of a large real-life database from

2.7 to 1.03 as compared to prefix expansion, better than any
prior art algorithms.

The hybrid-SRGE scheme is much more scalable than prior
art. This is because small ranges, which constitute the majority
of today’s real-life classification databases, can be efficienty
encoded by SRGE without using extra bits. SRGE also sup-
ports fast incremental updates since only a small number of
known ranges are encoded using extra bits. Finally, the packet
processing time required by SRGE is very small, since the
transformation from a W -bit binary-encoded number to a W -
bit BRGC number requires only W exclusive-or operations.

We have shown a lower bound of W on the worst-case
expansion ratio of any ternary encoding scheme. The SRGE
algorithm achieves worst-case expansion of 2W − 4. We
conjecture that there exist ternary encoding schemes with
better worst-case expansion ratio. Finding the tight bound on
the worst-case expansion ratio of ternary encoding schemes
remains an interesting open problem. We note, however, that
lower worst-case expansion ratio does not necessarily imply
lower average expansion ratio.

X. ACKNOWLEDGMENT

The authors are deeply indebted to Cisco Systems, Will
Eatherton, and David Taylor for kindly providing us the
classification database we used for this work. We would also
like to thank Yehuda Afek, Karthik Lakshminarayanan, Anand
Rangarajan , and Srinivasan Venkatachary for assisting us
in the process of obtaining access to the database. We are
also indebted to Ronny Roth for pointing out the connection
between the TCAM range encoding and DNF expression
minimization problems and for helpful discussions.

REFERENCES

[1] D.E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Computer Surverys, pp. 238–275, 2005.

[2] Pankaj Gupta and Nick McKeown, “Algorithms for packet classifica-
tion,” in IEEE Network Special Issue, 2001.

[3] George Varghese, Network Algorithmics: An Interdisciplinary Approach
to Designing Fast Networked Devices, The Morgan Kaufmann Series
in Networking, 2005.

[4] Florin Baboescu, Sumeet Singh, and George Varghese, “Packet classifi-
cation for core routers: Is there an alternative to cams,” in INFOCOM,
2003.

[5] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” in ACM SIGCOMM 98, Sept. 1998,
pp. 191–202.

[6] H. Liu, “Efficient mapping of range classifier into ternary-cam,” in Hot
Interconnects, 2002.

[7] J. van Lunteren and T. Engbersen, “Fast and scalable packet classifica-
tion,” JSAC, 2003.

[8] Srinivasan Venkatachary Karthik Lakshminarayanan, Anand Rangarajan,
“Algorithms for advanced packet classification with ternary cams,” in
SIGCOMM, 2005.

[9] F.Yu and R.H. Katz, “Efficient multi-match packet classification with
tcam,” in HOTI, 2004.

[10] D. Taylor E.Spitznagel and J. Turner, “Packet classification using
extended tcams,” in ICNP, 2003.

[11] Baruch Schieber, Danny Geist, and Ayal Zaks, “Computing the min-
imum dnf representation of boolean functions defined by intervals,”
Discrete Applied Mathematics, , no. 1-3, pp. 154–173, 2005.

[12] “Ports numbers,” 2006, http://www.iana.org/assignments/port-numbers.
[13] Jonathan S. Turner David E. Taylor, “Classbench: A packet classification

benchmark,” in IEEE INFOCOM, 2005.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1396
Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 17, 2008 at 00:23 from IEEE Xplore. Restrictions apply.

